ISP and PPGL Update

April 2023

Debbie Cohen, MD Professor of Medicine University of Pennsylvania Director of Hypertension Director of Pheochromocytoma/Paraganglioma Program

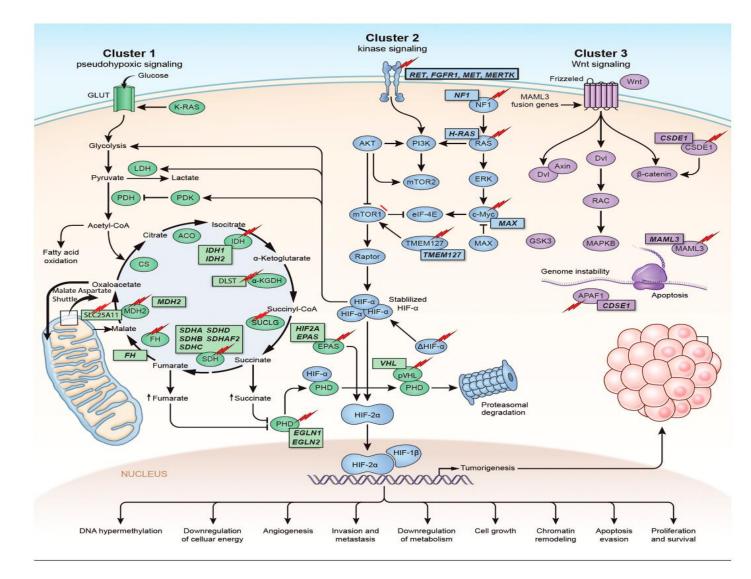
Highly heritable, multiple genes.....

Table 1 | Genes and diseases

Disease (phenotype MIM numbers)	Genes	Mutation rate (%)*	Main features
Neurofibromatosis type 1 (162200)	NF1	3	Café-au-lait spots, neurofibromas, axillary and inguinal freckling, Lisch nodules, osseous lesions, optic gliomas, mainly phaeochromocytomas
Multiple endocrine neoplasia type 2 (171400; 162300)	RET	6	2A: Medullary thyroid cancer, primary hyperparathyroidism, PPGL 2B: Medullary thyroid cancer, PPGL, Marfanoid habitus, mucocutaneous neuromas, gastrointestinal ganglioneuromatosis
von Hippel–Lindau disease (193300)	VHL	7	Central nervous system or retinal haemangioblastomas, renal cell carcinoma, PPGL, pancreatic neuroendocrine tumours and cysts, endolymphatic sac tumours, papillary cystadenoma of the epididymis and broad ligament
Hereditary paragangliomas (168000; 605373; 115310; 601650; 614165)	SDHx genes: SDHB SDHD SDHC SDHA SDHAF2	10 9 1 <1 <0.1	PPGL, rare renal cancers, GIST PPGL, rare renal cancers, GIST PPGL, rare renal cancers, GIST PPGL, GIST Head and neck paraganglioma
Familial phaeochromocytomas (173300; 613403; 154950)	IMEM127 MAX	1 1	Mainly phaeochromocytomas, rare renal cancers Mainly PPGL
Polycythemia paraganglioma syndrome (603349)	EPAS1	1	Polycythemia, PPGL, somatostatinoma
Leiomyomatosis and renal cell cancer (150800)	FH	1	Cutaneous and uterine leiomyomas, type 2 papillary renal carcinoma, rare PPGL

*The mutation rate is the percentage of patients with PPGL with mutations in the gene concerned. Abbreviations: GIST, gastric stromal tumours; MIM, Mendelian Inheritance in Man; PPGL, paraganglioma and/or phaeochromocytoma.

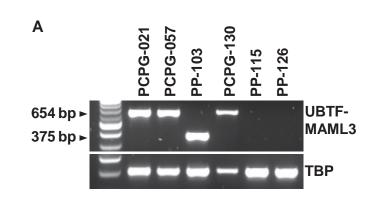
Gene	Inheritance	Locus	Associated tumors/ features
DNMT3A	Autosomal dominant	2p23.3	Gain-of-function mutations: H&N PGL
DLST	Autosomal dominant	14q24.3	PGL (multiple) >> PCC
SUCLG2 ^a	ND	3p14.1	PCC >>>> pPGL
MAML3 fusions	Sporadic	4q31.1	PCC
RET fusions	Sporadic	10q11.21	PCC

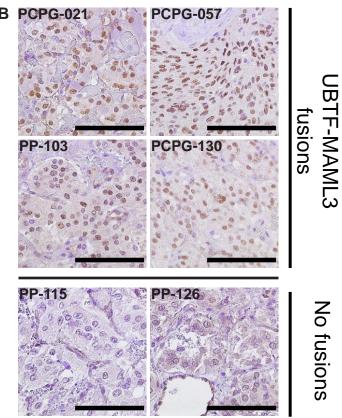

^aMore evidence are needed before considering it as a susceptibility gene.

- PHEO/PGL has the highest rate of underlying genetic susceptibility of any tumor type
 - ~30% overall
 - ~40% in paragangliomas
 - ~50% in metastatic disease
- Genetic testing is considered standard of care for all patients with PHEO or PGL

Favier et al., Nat Rev Endo 2014; Gimenez-Roqueplo et al., Endocr Relat Cancer, 2022-

Clinically tested genes


- VHL
- RET
- **NF1**
- SDHA
- SDHB
- SDHD
- SDHC
- TMEM127
- SDHAF2
- MAX
- **FH**
- EPAS1
- EGLN1
- *KIF1B*



DLST variant is likely pathogenic

- DLST mutated tumors are pseudohypoxic but not hypermethylated
- Succinulation is highly dependent on DLST
- DLST tumors hyposuccination which is a new mechanisms underlying development of PPGL

Confirmed UBTF~MAML3 fusions in 7% PCC/PGL and associated with metastatic disease MAML3 overexpression is tumorigenic Overexpressed MAML3 increases and interacts with β-catenin to activate WNT signaling

29% of sporadic mPPGL have UBTF-MAML3 fusion

Alzofon, Koc et al Mol Cancer Res 2021

Cyanotic Congenital Heart Disease & PPGL

- Improved management for patients with cyanotic congenital heart disease (CCHD) has led to prolonged lifespan but also increased prevalence of PPGL
- PPGL susceptibility genes including VHL, SDH(x), FH, and EPAS1 have been connected to a common signaling pathway that activates hypoxia-inducible factors
- Hypothesis: hypoxic environment selects for gain-of-function mutations (EPAS1) predisposing patients to develop PPGL even when environment is no longer hypoxic
- Increase incidence of PPGL in CCHD patients
- Possible that similar etiology for PPGL in patients with sickle cell disease

INTRODUCTION: EPAS1 mutations and CCHD-PPGL Association

> N Engl J Med. 2018 Mar 29;378(13):1259-1261. doi: 10.1056/NEJMc1716652.

EPAS1 Mutations and Paragangliomas in Cyanotic Congenital Heart Disease

Anand Vaidya ¹, Shahida K Flores ², Zi-Ming Cheng ², Marlo Nicolas ², Yilun Deng ², Alexander R Opotowsky ³, Delmar M Lourenço Jr ⁴, Justine A Barletta ¹, Huma Q Rana ⁵, M Adelaide Pereira ⁴, Rodrigo A Toledo ⁶, Patricia L M Dahia ⁷

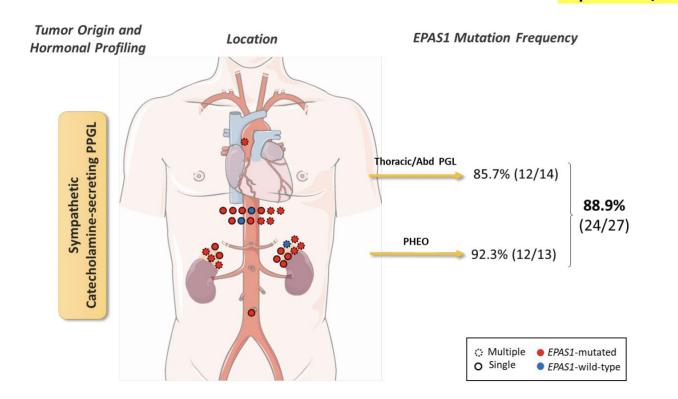
EPAS1 mutations in 4/6 PPGL tumors of 5 CCHD patients.

> J Clin Endocrinol Metab. 2022 Aug 18;107(9):2545-2555. doi: 10.1210/clinem/dgac362.

Genetic Analysis of Pheochromocytoma and Paraganglioma Complicating Cyanotic Congenital Heart Disease

Tatsuki Ogasawara ¹ ², Yoichi Fujii ¹ ², Nobuyuki Kakiuchi ¹ ³ ⁴, Yusuke Shiozawa ¹, Ryuichi Sakamoto ⁵, Yoshihiro Ogawa ⁵, Katsuki Ootani ⁶, Etsuro Ito ⁶, Tomoaki Tanaka ⁷, Kenichiro Watanabe ⁸, Yusaku Yoshida ⁹, Noriko Kimura ¹⁰, Yuichi Shiraishi ¹¹, Kenichi Chiba ¹¹, Hiroko Tanaka ¹², Satoru Miyano ¹², Seishi Ogawa ¹ ² ¹³

EPAS1 mutations in 15/16 PPGL/AMH tumors of 7 CCHD patients.


Typical missense gain-of-function somatic mutations of EPAS1 gene (HIF2A) in PPGL tumors Domain: Basic Helix-loop-helix domain Per-Arnt-Sim-A domain Per-Arnt-Sim-B domain Oxygen-dependent degradation domain Missense Transcriptional-activation domain 100 200 300 400 500 600 700 800 870 Ogasawara et al. JCEM 2022 MJPercy, et al. NEJM 2008 Lorenzo V, et al. Blood 2012 Comino-Méndez I, et al. Hum Mol Gen 2013 Toledo RA. ERC 2017

Congenital Cyanotic Heart Disease - CCHD

Tarade D, et al. Nat Commun 2018

*AMH: Adrenal Medullary Hyperplasia

Highly frequent and convergent EPAS1 gain-of-function in sympathetic CCHD-PPGLs

39/43 (91%) CCHD-sPPGLs described so far carry a EPAS1 gain-of-function mutation (Dahia P, Toledo Rodrigo)

Summary of data

Characteristic	Notes	
Demographics	4 of 9 patients are female	
Surgeries to correct CCHD	Most within days of life, latest was age 12 years, one had heart transplant	
Avg age of PPGL dx	30.7 years (SD: 9.6 years, range: 15-47 years)	
PPGL Symptoms	Hot flashes (5), arrhythmias (4), hypertension (4), abdominal pain (2), headaches (1), none (1)	
Multiple/metastatic	3 had multiple PPGL, 2 had metastatic or recurrent PPGL	
Location	Mediastinal and abdominal (6), head and neck (5), pheo (3)	
Size	Range from 9-65mm	
Genetics	3 patients: SDHB heterozygous (c.137G>A, p.Arg46GIn), SDHA variant of unknown significance, BARD1 (c.448C>T, p.Arg150*)	

Biomarkers to predict metastatic disease EDTA Plasma from PPGL and SDHx Carriers

 Measured succinate and succinate/fumarate levels in PPGL and SDHx carriers

Predictors variable for SDHx positive status	Cut off (uM)	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)	Sample #
succinate	4.94	64	91	58	93	140
succinate/fumarate	1.66	68	88	52	94	140
fumarate	3.18	50	66	22	88	140

 Succinate and succinate/fumarate – shown to be valuable diagnostic biomarkers in predicting SDHx genetic status prior to surgery

Biomarkers to predict metastatic disease

- Tumoral and circulation mRNA
- Telomerase reactivation
- Methylation analysis of TERT promotor

Future biomarkers for symptomatic PPGL

- Plasma succinate SDHx/IHC
- Circ miR_483 methyl TERT promotor

Functional Imaging algorithm according to genetic status

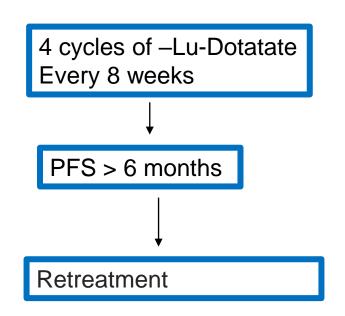
- Cluster 1a SDHx (SDHA, SDHB, SDHC, SDHD< SDHAF2) -Gallium-68 dotatate
- Cluster 1b vHL/EPAS1- Fluoro-dopamine PET
- Cluster 2 (RET/NF1/MAX/MAPK/TMEM127) Flouro-dopamine PET

Sporadic (no mutation)

- Primary pheo Flouro-dopamine PET
- Metastatic Gallium-68 dotatate

Personalized Treatment Approach Options for mPPGL

- SDHx mutated tumors PARP inhibitors with temozolamide
- Cluster 1 PPGLs HIF2-alpha inhibitors
- Cluster II PPGLs Tyrosine kinase inhibitors
- SSTR expression in PPGL ¹⁷⁷ Lu DOTATATE
- Norepinephrine transporter system expression (¹²³MIBG) - ¹³¹ MIBG


Current clinical Trials

177 Lu-DOTATATE in MPPGL/inoperable PPGL - PFS

- Randomaized phase II trial: TMZ vs
 TMZ + Olaparib in PPGL PFS
- Belzutifan in Advanced PPGL or pNET
- Lanreotide in MPPGL (Lampara) rate of tumor growth
- Axitinib and Lenvatinib -ORR

PRRT in inoperable PPGL (NIH)

- Phase II study
- Age > 18 years
- Metastatic or inoperable PPGL
- SSTR + disease documented by Ga-68 DOTATATE PET

Primary Objective

• PFS

Secondary Objective

- OS
- ORR
- Changes in plasma biochemistries
- QOL
- Decrease in BP meds

Immunotherapy

- PPGL are immunologically cold tumors
- Low amount of neoantigens, low somatic mutation burden, no/minimal leucocyte infiltration

Clinical Trials

- NCT 02834013 nivolumab/ipilimumab active, closed to PPGL
- NCT 02721732 pembrolizumab active/not recruiting
- NCT03333616 nivolumab/ipilimumab recruiting
- NCT04187404 E02401 peptide therapeutic vaccine + nivolumab recruiting

Therapeutics for Pheo/PGL

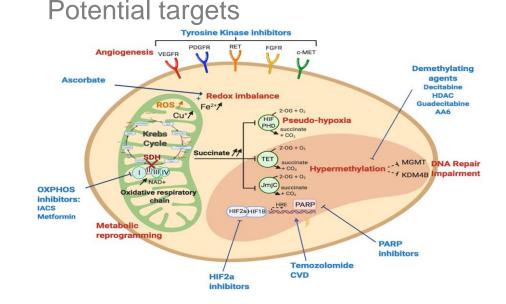

Clinical

Table 7. Ongoing clinical therapy studies for metastatic PPGLs

	•••			Clinical
Ongoing studies	Therapy	Patient number (n)	Status	Trials 202
NCT04394858	PARP inhibitor olaparib plus temozolomide		Recruiting	111a15 202
NCT01850888	(phase II, prospective) [¹³¹ I]-MIBG		Recruiting	
NCT00107289	[¹³¹ I]-MIBG (phase II, prospective)		Recruiting	
NCT04029428	[¹⁷⁷ Lu] DOTATATE vs [⁹⁰ Y] DOTATATE vs mix each of 50% (PRRT) (phase II, prospective)		Recruiting	
NCT03206060	[¹⁷⁷ Lu] DOTATATE (Lutathera) (PRRT) (phase II, prospective)		Recruiting (SDHx-r	elated and sporadic PPGLs)
NCT04276597	177Lu] DOTATOC (PRRT) (phase II, prospective)		Recruiting	
NCT04711135	[¹⁷⁷ Lu] DOTATATE (Lutathera) (PRRT) in adolescents (phase II, prospective)		Not yet recruiting	
NCT03923257	[¹⁷⁷ Lu] DOTATATE (PRRT) in children and adolescents (phase I/II, prospective)		Recruiting	
LAMPARA	Lanreotide (cold somatostatin analog)		Not yet recruiting	
NCT03946527	(phase II, prospective)			
NCT03034200	Dopamine receptor D2 and caseinolytic protease P (ClpP) agonist ONC201(phase II, prospective)		Recruiting	
NCT04284774	Farnesyltransferase inhibitor tipifarnib (RAS inactivation) (phase II, prospective)		Recruiting	
FIRST-MAPP Study, NCT01371201	TKI sunitinib (phase II, prospective, first randomized placebo-controlled study)	N = 74 (closed)	Data arriving soon	
NCT03839498	TKI Axitinib (AG-013736) (phase II, prospective)		Recruiting	
NCT03008369	TKI lenvatinib (phase II, prospective)		Active, not recruitin	B
NCT02302833	TKI cabozantinib (phase II, prospective)	N = 10	Recruiting (prelimin partial response	ary data from n = 10, 40%, PFS 11.2)
NCT04400474	Cabozantinib plus atezolizumab (CABATEN) (phase II, prospective)		Recruiting	
NCT02834013	Nivolumab plus ipilimumab (phase II, prospective)		Recruiting	
NCT02721732	Pembrolizumab (phase II, prospective)		Recruiting	
NCT02923466	VSV-IFNβ-NIS and avelumab(phase II, prospective)		Recruiting	
NCT04187404	Novel Therapeutic Vaccine (EO2401) (phase I/II, prospective)		Recruiting	

Black letters: potentially specifically interesting for cluster 1; gray letters: potentially specifically interesting for cluster 2.

Abbreviations: MIBG, meta-iodobenzylguanidine; PARP, poly(ADP-ribose) polymerase; PPGL, pheochromocytoma/paraganglioma; PRRT, peptide receptor radionuclide therapy; SDHx, succinate dehydrogenase subunit x; TKI, tyrosine kinase inhibitor;

Belzutifan (Welirig)

- Participated in clinical trial leading to FDA approval
- Large experience treating patients
- Response to pheo/pgl has been observed
- May be a therapeutic for patients with SDHx mutations

Nolting et al., Endocr Review, 2022; Kaelin, JCI, 2022

MPPGL: Baseline Patient Characteristics

- Retrospective cohort study
- 133 patients with PPGL were diagnosed with metastatic disease
- Penn 107, Colorado 26

Baseline Clinical Characteristic		Primary Tumor Location	% (N=133)	
Synchronous Metastases	N = 40 (30.1%)	Adrenal	31.6%	
	50.40/	Extra-Adrenal	38.3%	
Male	50.4%	Head/Neck	23.3%	
Median Age at	50.2 years (IQR			
Metastasis $36.7 - 61.9$)		Multiple Primary Tumors	6.8%	

• Median time between initial PPGL diagnosis and metastasis was 5.7 yrs (IQR 0.1 – 7.8)

Genetic status

Germline genetic status was assessed in 110 pts (82.7%)

Germline Variant	% of total Patient Coh0ort (N=133)	% of those patients who had genetic testing (110)
SDHB	33.1%	40%
SDHD	4.5%	5.5%
SDHA	1.5%	1.8%
NF1	1.5%	1.8%
SDHC	0.8%	0.9%
<i>Other Mutation (MSH2, FH, BRCA2)</i>	2.3%	2.7%
Negative Genetic Testing	39.1%	47.3%

48% had a **SDH** mutation

Treatments for Metastatic Disease

Local Debulking / Palliative Treatments were the most commonly utilized modalities

Local Therapy Modality	% (N=133)
Debulking Surgery	63.2%
≥ 2 Debulking Surgeries	22.2%
Palliative Radiation	43.6% (range 1 – 9 total RT courses per patient)

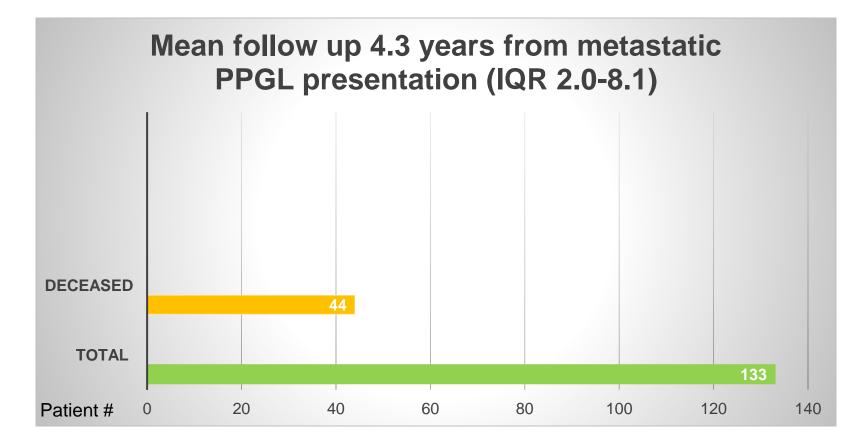
Systemic Therapies for Metastatic PPGL

Patients received a median of 1.9 systemic treatment lines (range 0 - 8)

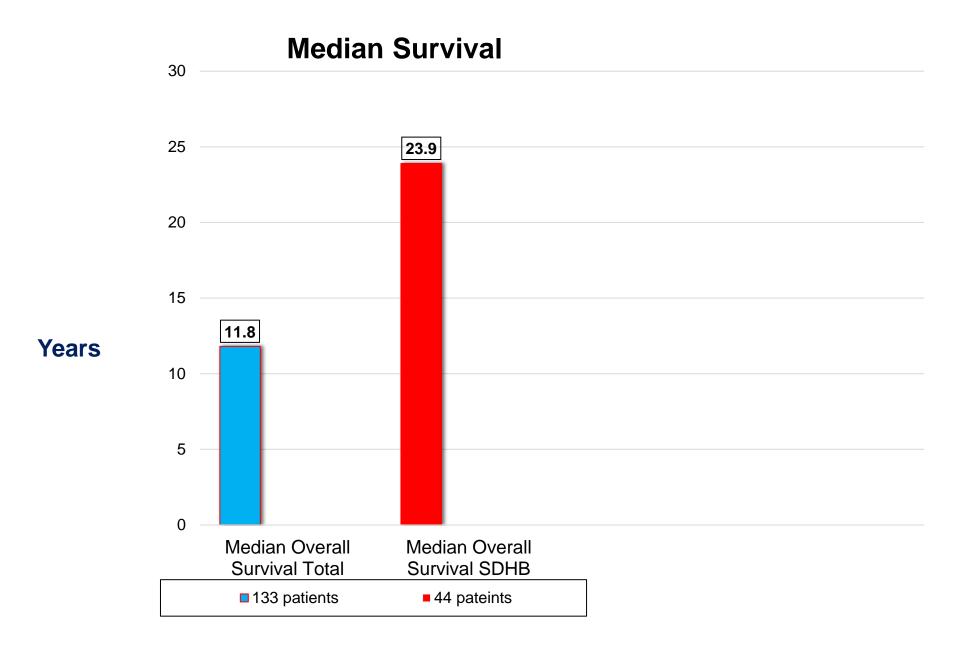
- 28.5% of pts received CVD chemotherapy
 - median treatment duration was 6.2 months (IQR 2.3 13)
- CVD treatment durations were numerically longer among SDHB-positive pts (N=14) vs. SDHBnegative pts (N=17)
 - Median treatment duration of 12.5 months (SDHBpositive) vs. 3.1 months (SDHB-negative)
- This may indicate greater clinical benefit and more durable disease control in SDHB-related disease.

Fishbein L, Ben-Maimon S, Keefe S, Cengel K, Pryma DA, Loaiza-Bonilla A, Fraker DL, Nathanson KL, Cohen DL. *SDHB* mutation carriers with malignant pheochromocytoma respond better to CVD. Endocr Relat Cancer. 2017 Aug;24(8):L51-L55. doi: 10.1530/ERC-17-0086. Epub 2017 May 31. PMID: 28566531.

Other Systemic Therapies


MIBG based therapies

- 33.1% received MIBG (range 1-4 cycles)
- 15.5% received Azedra (range 1-3 cycles)


Other

 30% patients received other systemic therapies (including temodar-based chemotherapy; SSA therapy)

Survival Data for MPPGL

44 (33%) of patients died from total of 133

CanStockPhoto.com

